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Model Coupling with SWMF

Block Diagram of the Space Weather Modeling Framework
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Observations onitors SWMF is freely available at

http://csem.engin.umich.edu

=
M D Stacs Sciencs Center for Space , /)
@ Environment Modeling g4

UNIVERSITY of MICHIGAN




X-MHD Model: BATS-R-US

Time-stepping
Local explicit (CFL control) for steady state
Global explicit
Part steady explicit

Explicit/implicit
Point-implicit
Semi-implicit
Fully implicit

Conservation laws
Hydrodynamics, MHD
Ideal & non-ideal
Hall
Anisotropic pressure
Semi-relativistic
Multi-species
Multi-fluid
Ideal & non-ideal EOS

Numerics
Conservative finite-volume discretization
2nd (TVD), 4th (PPM) & 5th (MP)

spatial order schemes
Rusanov/HLLE/AW/Roe/HLLD

Splitting the magnetic field into B, + B,

Divergence B control
CT, 8-wave, projection, parabolic-hyperbolic cleaning

Block Adaptive-Tree Solar-wind Roe-type Upwind Scheme

AMR Library (BATL)
Self-similar blocks
Cartesian grid
Curvilinear grid (can be stretched)
Supports 1, 2 and 3D block-adaptive grids
Allows AMR in a subset of the dimensions
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Source terms
Gravity
Heat conduction
lon-neutral friction
lonization
Recombination
Charge exchange
Wave energy dissipation
Radiative heating/cooling

Auxiliary equations
Wave energy transport
Radiation transfer (multigroup diffusion)
Material interface (level set)
Parallel ray-tracing
Tabular equation of state
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Main Space Weather Applications

z

L_X -o- AWS%M (Alfvén Wave Solar Model)
® Chromosphere to 10 AU
® Turbulence-driven solar wind
O Input:
& Synoptic solar magnetogram

& Outward propagating turbulence Poynting vector at the
inner boundary
© Free parameters (in simulation domain):
& Perpendicular correlation length of turbulence
© Simulated observables:
5 SOHO, STEREO, SDO synthetic EUV, X-ray and visible
images
& Solar wind parameters anywhere between 1 R, and 10
AU

-o: MARCIE (Magnetosphere with Ring Current and

lonospheric Electrodynamics)
© BATS-R-US + RCM/CRCM + RIM
© Multifluid Hall MHD with anisotropic temperatures
O Input:
5 Upstream solar wind

5 Date/time (for magnetic axis)
5 F10.7 flux

© Simulated observables:
5 Dst, Kp, regional K, CPCP, ...
5 Plasma parameters anywhere in the magnetosphere

Center for Space o @?)
Environment Modeling g4

M ATMOSPHERIC, OCEANIC
- AND SPACE SCIENCES

UNIVERSITY of MICHIGAN




AWS#M Model XMHD physics:

® Separate T;, T;, and T,

¢ WKB equations for parallel and antiparallel propagating imbalanced
turbulence (w..)

® Non-WKB physics-based reflection of w_. results in turbulent cascade

® Correction for presumed uncorrelated waves w. in the balanced
turbulence near apex of closed field lines

Radia}ive cooling ® Physics-based apportioning of turbulence dissipation at the gyro-kinetic
/ scales into coronal heating of various species

~ _Heat conduction ®* Wave pressure gradient acceleration of solar wind plasma
¢ Collisional and collisionless electron heat conduction
¢ Radiative plasma cooling

Balanced turbulence

at top of closed field lines Imbalanced turbulence

on open field lines

Boundary Conditions:
® Inner boundary is at the upper chromosphere where all temperatures are

\) Heat conduction 50,000K
® Plasma density at inner boundary is 2 X 101’ m- (to avoid chromospheric
Radiative cooling evaporation)

¢ Radial magnetic field is derived from synoptic solar magnetograms

¢ Poynting flux of outward propagating turbulence can be chosen within an
observationally constrained range

Sokolov et al., 2013 *® Perpendicular correlation length of turbulence can be chosen within an

Van der Holst et al.. 2014 observationally constrained range
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March 7th 2011 CME Simulation

CME simulation with the AWSoM model:
® Gibson-Low flux rope erupts from active region 11164
® The simulation matches the arrival time with 2 hours
¢ SIR-CME interaction crucial to CME structure at 1AU

M. Jin et al. in
preparation
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MARCIE Model
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MARCIE Comparison with the SYM-H Index (similar to Dst)

4 -7 April 2010 SYM-H

—— WDC 1-min SYM-H
—— I1I: Anisotropic MHD with CRCM
IV: Isotropic MHD with CRCM
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CCMC Storm Validation:
POD and POFD for the 4 threshold levels
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CCMC K-index Validation (K threshold = 8)

Heidke | Critical Heidke | Critical
Model skill |Success| POD POFD Model skill |[Success| POD POFD
score | Index

Index

SWMF SWMF

SWMF,a SWMF,a

OpenGGCM OpenGGCM

LFM-MIX LFM-MIX

WEIMER WEIMER

WEIGEL WEIGEL

High-latitude stations Mid-latitude stations

H (hits) — Number of cases where model and observation exceed threshold
F (false hits) — Number of cases where model exceeded threshold but observation did not
M (misses) — Number of cases where observation exceeded threshold but model did not
N (no hit) — Number of cases where neither model nor observation exceeded threshold

Heidke Skill Score = 2(H*N-M*F)/[(H+M)*(M+N)+(H+F)*(F+N)]

Critical Success Index (Threat Score) = H/(H+M+F) (perfect=1, no skill=0)
Probability Of Detection (POD) = H/(H+M)

Probability Of False Detection (POFD) = F/(F+N} (perfect=0)
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Research Codes vs. Operational Codes

Community Code Operational Code

Research Code

Run and analyzed by a small
group of scientists

Often “hacked” together with no
software discipline

No manual, few comments

No version tracking, bug fix
history

Validation by developer

Code changes as the developer
wishes

No intellectual property concern

Developers guard source code
as a trade secret

Only limited information is
published about algorithmic and
model details
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Run by highly trained scientists
at CCMC, analyzed by
community members

Streamlined version of research
code

Occasional manual, some
comments

Version tracking, some bug fix
history

Independent validation

Occasional code updates

CCMC “rules of the road” apply,
but no contractual agreement

Source code is available only to
CCMC staff

CCMC staff does not modify
code

Run and analyzed by non-
scientists

Highly controlled software
product

Extensive manual and detailed
comments

Version tracking, detailed bug fix
history

Continuous validation, skill
score evolution

Highly controlled regular code
update process

Intellectual property is major
concern, lawyers involved

SWPC treats code as
government property

All algorithmic and model details
must be clearly stated
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111 -o- Step 2: Transition to operations
Transition Process (Sv\r;PC) it perati

© Code developers

. : & iodi
:6-Step 1: Transition to community use . pter'c(’jdb'c Cogte updates ,
(CCMC) standby software suppor
5 code documentation
© . :
C;CMC ” X - 5 optimize default options
provides access to space researc
models © SWPC _
5 tests and evaluates models S :fgsdiitgﬁglemng (nuclear war
& runs a real-time space weather " de d tati
model testbed code documentation
5 supports space science education & licensing agreem_e.nts
©® CCMC does not 5 igi;]t\\;veanrteiotrl;gceablllty and
5 ha-rdens codes _ & transition to new platforms
5 writes code documentation 5 periodic skill evaluation and
& optimizes model parameters updates
5 fixes code bugs (features?) 5 + many other issues

© Code developers
& train CCMC staff on model use

5 modify research codes to minimiz
the number of “knobs”

& fix code bugs (features?)




What is the Developer Cost of Transition?

-o-Estimate for SWMF

© Transition/support to CCMC: ~0.5 FTE/year
& Simplify options
& Fine-tune defaults
& Train personnel
& Regular consultations
&5 Regular updates
© Transition/support to SWPC: ~ 1 FTE/year A@A
5 Manual
Robustness
Software engineering
Intellectual property issues
Support services
5 Regular updates

-8:1.5 FTE/year is probably a robust estimate for most large
codes

5
5
5
5
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Summary

-o-\With 20 faculty and 15 Ph.D. students CSEM is a major
participant in space weather research

-e-:Over the last 20 years we developed the high-
performance BATS-R-US multiphysics X-MHD code
and the SWMF framework

-e-:Major application areas are solar-heliosphere (AWS3M)
and magnetosphere (MARCIE)

-o-:Our next challenge is fluid-kinetic coupling (PIC/hybrid
and DSMC)

--:AWS%M and MARCIE are running at CCMC and are
available in Runs-for-Request simulations

--:SWMF and its components are downloadable (after
registration) from http://csem.engin.umich.edu
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